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On Kinetic Phase Transitions in Surface Reactions 
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The steady-state properties for the bimolecular surface reaction A + ½Bz --~ AB are investigated. 
Kinetic phase transition points, bistability, and hysteresis characteristics are specified by using 
kinetic equations of the mean-field-approximation type. Comparisons with Monte Carlo simulation 
results are made. ¢ 1990 Academic Press, Inc. 

1. INTRODUCTION 

Surface reactions when operating as 
open systems behave as nonequilibrium 
systems (1). They show kinetic (or non- 
equilibrium) phase transitions, bistability 
and associated hysteresis, complex self- 
sustained oscillations, and dissipative 
structures like propagating waves of tem- 
perature and concentration (2). 

Most oxidation reactions catalysed by 
metals of the Pt group exhibit such proper- 
ties (3). These reactions have a main fea- 
ture in common: they involve a competitive 
coadsorption of two reactants sharply dif- 
ferent in their redox properties. The most 
thoroughly studied surface reaction of this 
type is the catalytic CO oxidation (4). Bi- 
stability of the oxidation rate under station- 
ary conditions (steady-state hysteresis) has 
been observed (5). The two branches of the 
reaction rate coalesce at a point where self- 
oscillations are observed (4). 

These CO oxidation rate oscillations 
have been tentatively described by a bewil- 
dering variety of kinetic models involving 
nonlinearities of different nature (see the 
review by Razon and Schmitz (4), Table 3 
of which refers to about a hundred 
models!). The prescription includes in the 
kinetic scheme some steps which sequen- 

Research Associate, National Fund for Scientific 
Research (Belgium). 

95 

tiaUy exert a reversible feedback on the cat- 
alytic properties of the surface (6). Depend- 
ing on the pressure conditions, two models 
of current interest for isothermal self-oscil- 
lations should be mentioned. 

In their study of the CO oxidation at low 
pressure (---<10 -4 Torr) on Pt(100) crystals, 
Ertl and co-workers (7) have derived a 
model which couples the rate oscillations 
with a reversible surface structural transi- 
tion hex ~ (1 x 1). The two phases exhibit 
different adsorption properties of the reac- 
tants. At higher pressure (>1 Torr) the 
most common interpretation for these oscil- 
lations is supported by the STM (Sales- 
Turner-Maple) model (8-10) which in- 
volves a coupling of the reaction with a 
reversible metal oxidation ~ reduction 
step. The reactivity on the surface Pt oxide 
is different from that on the metal. 

As a companion process of this self-oscil- 
lating behaviour we should mention the re- 
action rate resonances observed when the 
reaction operates under feed concentration 
cyclic forcing. Under such periodic bound- 
ary conditions the time averaged reaction 
rate can be very much larger than the maxi- 
mum possible steady-state reaction rate at 
the same temperature (11-13). 

A detailed description of these twin dy- 
namical behaviours should feature a theo- 
retical investigation of the possible kinetic 
phase transitions exhibited by the adsor- 
bate under the influence of the bifurcating 
parameters involved in the problem. 
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The objective of this paper is the analysis 
of the bifurcation diagrams corresponding 
to kinetic schemes modelling a CO oxida- 
tion type reaction. These phase diagrams 
are obtained either by solving kinetic equa- 
tions derived on the basis of statistical me- 
chanics arguments or, more directly, from 
Monte Carlo simulations (MCS) (14). 

We consider the bimolecular surface re- 
action 

A + ½B2 catalytic surface 
AB (1) 

described, as a start, by the simple irrevers- 
ible model: 

A + S ~ A S  (2.1) 

B2 + 82 2~ 2BS (2.2) 

AS  + BS 3--> AB + $2, (2.3) 

where S denotes a vacant site, $2 stands for 
a vacant dual site, i.e., a pair of nearest- 
neighbour empty sites. 

We also show how the bifurcation dia- 
gram of the basic model (Eqs. (2.1)-(2.3)) is 
modified by the inclusion of the desorption 
of molecules A (a bit of reversibility), 

A + S ~--AS (3) 

and/or the Eley-Rideal mechanism (a sec- 
ond reaction path) 

A + BS 4_~AB + S. (4) 

Both the kinetic equations and the MCS 
discussed below are based on the following 
assumptions. 

(1) The catalyst surface remains struc- 
turally and chemically stable during the re- 
action. 

(2) A and B2 molecules competitively ad- 
sorb on active sites of the same kind and 
react to product AB molecules via the 
Langmuir-Hinshelwood (LH) mechanism, 
Eq. (2.3). The rate constant k3 of this reac- 
tion mechanism is the reciprocal of the re- 
action time r3, i.e., the mean time spent by 

two adjacent A and B reactants to form the 
product AB molecule which then desorbs 
without interacting further with the system. 

(3) Any activation energy is coverage in- 
dependent. 

(4) The temperature and flow rate are 
constant and such that the reaction may be 
considered as isothermal and kinetically 
controlled. Heat and mass transfer resis- 
tances are absent. 

(5) The state variables of the problem are 
the fractional coverages defined as follows 
(for a square lattice): 

Xi = N / N ,  X• = Nu/2N, Xo~ = N o j 6 N .  
(5) 

Ni(N U, NUk) stands for the number of sites 
(dual sites, triplet sites) per unit area occu- 
pied by the species i (U pairs, ijk triplets). N 
is the total number of active sites per unit 
area of the catalyst surface. 

With these assumptions each step i (of 
rate R,-) of the irreversible kinetic scheme, 
Eqs. (2.1)-(2.3), contributes to the following 
balance equations: 

dXa/dt = R1 - R3 = klXs - 2k3Xa~ 

(6.a) 

dXB/dt = 2R2 - R 3  = 2kzXss - 2 k 3 X A B .  

(6.b) 

Hereafter subscripts 1 and 2 refer to A 
(e.g., CO) and B (e.g., oxygen), respec- 
tively. The subscript S refers to vacant 
sites. The rate constants ki are defined in 
Section 2. 

Although exact, the system of Eqs. (6a) 
and (6b) is not closed: it conceals a dynamic 
hierarchy connecting "s i tes"  to pairs, pairs 
to triplets, etc. Indeed, in addition to the 
obvious relation 

Xs = 1 - - X A - - X B  (7) 

we have the sum rules (for a square lattice) 

x, = ½[x~; + ~ x,~] (8) 
J 

X U = [1/(1 + 8o)][Xiji + ~] Xo.k], (9) 
k 

where 8 o = 1 if i = j and zero otherwise. 
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The cut-off of this hierarchy is usually 
achieved within the si te-mean field approxi- 
mation (s i te-MFA),  i.e., assuming that 
(e.g., Ref. (15)) 

(i) the adsorbed molecules A and B are 
randomly distributed among the surface 
sites. 

(ii) the occupation state of any site is in- 
dependent of its neighbourhood. 

This s i t e -MFA (denoted by the super- 
script 0) consists of approximating X o by 

X °- = [2/(1 + 80)]X°X °. (10) 

The s i t e -MFA phase transition features 
of the basic model, Eqs. (2.1)-(3), are pre- 
sented in Section 2. 

In Section 3 we derive closed kinetic 
equations for the pair coverages X o by ap- 
plying the same "mean field" concept to 
dual sites as, here above, to single sites. 
We assume that the occupation state of 
any dual site is independent of its 
neighbourhood; i.e., we restrict our de- 
scription to the nearest neighbour correla- 
tions. The idea underlying this pa i r -MFA 
(17) may be found in the Bethe closed form 
approximation for lattice systems (18). 

For instance the dissociative adsorption 
of molecules B2, Eq. (2.2), increases the 
coverage XAB as follows 

dXA  I 
dt 1(2) = 4-~ NASS (11) 

According to this pair -MFA,  we assume 
that 

Nass = Nss  • 6 • Ps/a or NAS " 3 " Ps/s. 

Any pair SS(AS)  has 6(3) dangling bonds 
available to form a triplet A S S  with a proba- 
bility Ps/a(Ps/s) per bond. Pi/j is the condi- 
tional probability to meet a dual site with 
one side in s tatej  while the adjacent side is 
in a given state i: 

Pi/j = No.14N~ = X~I2X~; 

Pi/i= 2Nu/4Ni = Xii/Xi. (12) 

Therefore, Eq. (11) becomes 

dXAa 3 
"-~ ~2) = 2 k2XssXas/Xs. (13) 

Proceedings in this way we derive six 
coupled kinetic equations for X o (see Ap- 
pendix A) whose solutions lead to the cov- 
erages Xi (see sum rule, Eq. (8)). 

Full details of our MCS procedures may 
be found in Ref. (14b,c). Restricting the ki- 
netic scheme to Eqs. (2.1)-(2.3) and (3), we 
can sketch our MCS as follows. 

A random rainfall of molecules A and B2 
is uniformly distributed on a square lattice 
submitted to boundary conditions and 
empty at the start. We assume the adsorp- 
tion steps, Eqs. (2.1)-(2.2), to be Poisson 
processes and therefore, for empty sites, 
we randomly select the arrival of each mol- 
ecule A or B2 on the basis of an exponential  
distribution of average ri (i = 1, 2): 

"ri = k/-1, (14) 

the nearest event in time being pro- 
grammed. 

Once adsorbed on the lattice a molecule 
A can desorb or, possibly, react with an 
adjacent adsorbed partner B. When com- 
petitive these processes are selected as for 
the adsorption processes but with r;, Eq. 
(14), specified accordingly, i.e., for i = - 1, 
3. For the steps i = 2, 3 and when necessary 
the choice between one or another favor- 
able configuration is randomly selected by 
using a uniform distribution. 

In section 4 we present and discuss the 
main features of the bifurcation diagrams 
obtained, respectively, within the site- 
MFA, the pa i r -MFA,  and by our MCS 
treatment of reaction, Eq. (1). 

Comparisons are also made with results 
issued from the investigations of the irre- 
versible model, Eqs. (2.1)-(2.3), idealized 
along the rules of Ziff et al. (16). These au- 
thors assume, especially, an infinite reac- 
tion rate constant k3 (i.e., r3 = 0) and, there- 
fore, the absence of pairs A B  on the surface 
(i.e., XAS = 0 always). This assumption 
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clearly refers to situations where the ad- 
sorptions, Eqs. (2.1)-(2.2) may be consid- 
ered as the rate-limiting steps of the global 
kinetics. In their MCS of the kinetics of the 
irreversible model, Ziff et  al. show that the 
adsorbate undergoes both a f i r s t -  and a sec-  

o n d - o r d e r  kinetic phase transition. These 
two transition points delimit in control pa- 
rameter space the domain of existence of a 
m i x e d  adsorbate. Outside this "reactive 
window" the surface is saturated by a sin- 
gle species and the reaction is totally inhib- 
ited. These results are confirmed by the 
pair-MFA kinetics description proposed by 
Dickman ( 1 7 )  for this model (hereinafter 
called the ZD model). 

In contradistinction to the ZD model, our 
approach considers, as a rule, a finite reac- 
tion rate constant k3 (i.e., XAB :k 0). There- 
fore we were able to investigate on a larger 
scale the bifurcating role of the control pa- 
rameters on the kinetics of reaction, 
Eq. (1). 

Moreover, in Section 4 we also show 
how the bifurcation diagram of the irrevers- 
ible model is modified by (i) the desorption 
of molecules A, Eq. (3), which induces a 
steady-state hysteresis, and (ii) the Eley-  
Rideal mechanism, Eq. (4), which sup- 
presses the second-order kinetic phase 
transition. 

Conclusions are proposed in Section 5 
with special attention to the second-order 
kinetic phase transition which, in the ab- 
sence of any experimental evidence, re- 
mains an artifact of the models so far inves- 
tigated. 

2. SITE MEAN FIELD APPROXIMATION 

In the s i t e - M F A ,  Eq. (10), the kinetic 
equations, Eqs. (6.a) and (6.b) read 

d X ° / d t  = R o - R o = k l X  ° - 4 k 3 X O X  o 

(15.a) 

dX°B/dt = 2R o - R 0 = 2k2(X°) 2 

- 4k3X°aX °. (15b) 

The adsorption rate constants (per site) k; 
(i = 1, 2) may be written as follows (e.g., 
Ref. (15) )  

ki = kipi = K.iP(rlSi, i + 8i.2)/(1 + ~), 
i =  1,2, (16.a) 

where 

ki = c r i N - l ( 2 7 r m i k T )  -1/2 e x p ( - E i / R T ) .  

(16b) 

pi, o-. and E; are, respectively, the partial 
pressure, the condensation coefficient, and 
the adsorption activation energy. More- 
over, ~9 denotes the partial pressure ratio 

"q = Pl/P2, (16.c) 

and P, the total pressure of the reactants 

P = Pl + P2. (16.d) 

For future use let us also define the temper- 
ature-dependent parameter a r  

otr = k2/kl = am exp[-(E2 - E 1 ) / R T ] ,  

a~ = (tr2/crj)(mj/m2) I/2 (16.e) 

and the reaction rate constant k3 

k3 = k; e x p ( - E 3 / R T ) .  (17) 

Finally, by referring to the CO oxidation 
(4), we shall assume throughout this work 
that 

E3 > E 2  > E l  ~ 0  (18) 

The system of Eqs. (15.a) and (15.b) admits 
four steady-state solutions (denoted by 
overbars) characterized by the following 
linear stability signatures (e.g., Ref. (19b):  
two p u r e  adsorbates 

~'0A = 1, .~O = 0; a stable node (19.a) 

.~,o = 0, X "° = 1; a saddle point (19.b) 

and two m i x e d  adsorbates 

.~0A = ½(1 -- ,Y0)[1 + 8], 
~o = ½(1 - .~[I - a]; 

a saddle point (20.a) 
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-,YOA = ½(1 -- ,,~s0)[1 -- ~], 

2 g  = ½(1 - + 8 ] ;  

a stable node, (20.b) 

where (see Eqs. (16.a)-(16.e) 

~ o  = k l /2k2  = "0/2~T (21) 

with 

0 -<k l -<2k2 ,  0--<"0--<2O~T. (22) 

The quantity 8 is the positive square root of 

82 = 1 - kc/k3, (23) 

where 

kc = k l X ° / ( 1  - ,,~0)2. (24) 

Let us now consider the main steady- 
state features of the irreversible model, 
Eqs. (2.1)-(2.3), treated in the site-MFA. 
Comparisons should be made with experi- 
ments performed in a temperature range 
where the desorption of A (and afortiori of 
B2) is negligible. 

(I) The steady-state total adsorbate cov- 
erage (use Eqs. (7) and (21)) 

p o A + ~ o  = 1 - k i /2k2  = 1 --"0~2aT (25) 

as well as the steady-state reaction rate (use 
Eqs. (21) and (16.a)-(16.e)) 

K 0  = K 0  = 0 

= ~ / 2 k 2  = kiP"02/2ar(1 + "0) (26) 

do not depend on the reaction rate constant 
k3. This drawback, clearly due to the s i t e -  
MFA 

.~0 S = ( ,~)2  (27) 

has as consequences that the reaction rate 
should decrease slightly when T increases 
(at P and "0 fixed) and be parabolic in the 
limit "0 ---> 0 (at P and T fixed). These fea- 
tures are not confirmed by the experi- 
ments (5). 

(2) The reaction leads to a stable steady 
mixed adsorbate (richer in B) provided (see 
Eqs. (20.b) and (23)) 

k3 > kc. (28) 

Note that in the s i t e - M F A  the surface can 
be "poisoned" by B(X°A = 0,.,V ° = 1) only in 
the limit b ~ 1, i.e., practically, when '0 
goes to zero. We shall see later that the 
p a i r - M F A  as well as MCS of the model 
shows that this s e c o n d - o r d e r  (i.e., continu- 
ous) kinetic phase transition occurs at a 
f i n i t e  value of '0. 

(3) A f i r s t - o r d e r  (i.e., discontinuous) ki- 
netic phase transition between an equally 
distributed stable adsorbate (~o __ ~ o  = (I 

- .~°)/2) and a stable pure A-adsorbate (.~°a 
= 1, .~o = 0) occurs when (see Eqs. (20) 
and (23)) 

k3 = kc (29) 

or, explicitly (use Eqs. (24), (21), and 
(16.a)-(16.e)) when 

"03 + (1 - 4CtT- 2OtTfqP/k3)"02 

- 4ar( l  - aT)"0 + 4a 2 =  0. (30) 

The first-order phase transition (see Fig. 
1) occurs for appropriate values of three ex-  
t e r n a l  parameters; namely, the reactant to- 
tal pressure P, Eq. (16.d), the partial pres- 
sure ratio "0, Eq. (16.c), and the ambient 
temperature T. Eq. (30), together with Eq. 
(22), shows the subtle role of P, "0, and T as 
b i f u r c a t i n g  parameters of the problem. 

At this critical point, Eq. (29), the system 
switches from the reactive phase, where 
the reaction rate is maximum 

= k v g o  = kc l - , 0)2 (31) 

to an i n h i b i t e d  phase ("poisoned" by A). 
In experiments, this first-order transition 

point corresponds to the sudden transition, 
in the control parameters space (P, "0, T), of 
the (maximum) self-oscillation regime to its 
extinction. This transition is commonly ob- 
served in the catalytic CO oxidation (4, 5). 
Depending on the experimental conditions 
this critical point undergoes r e l a t i v e  shifts 
which can be interpreted in the site-MFA as 
follows. 

If we note that the cr i t i ca l  constant kc, 
Eq. (24), behaves as follows (use Eqs. (21) 
and (16.a)-(16.e)) 
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FIG. 1. Site-MFA bifurcating diagram corresponding to the steady-state mixed adsorbates, Eqs. 
(20.a) and (20.b). Here k3 = l06 S - I ,  P = 1 atm, and T = 500 K (see Eqs. (48a)-(48c)). The solid line 
corresponds to the stable (resp. unstable) coverages ~o (resp..~°a); the dashed line corresponds to the 
unstable (resp. stable) coverage ~o (resp..~°a). The first-order transition occurs for "O = "0{ = 0.0132 
(see Eq. (30)). The inset shows the corresponding steady-state reaction rate R°3, Eq. (26). 

with 

and 

k¢ = PF(~q, T) (32.a) 

(OF/O~)r > 0 (32.b) 

(OF/OT)~ < 0, (32.c) 

we readily reach the following conclusions. 

(i) For  a given pressure P,  the first-order 
transition is reached by fixing ~ (resp. T) 
and letting T (resp. "0) vary. This first-order 
transition point reached by allowing one bi- 
furcating parameter  to increase will be de- 

noted by the subscript " 1 "  and the super- 
script " > " .  According to Eqs. (17) and 
(32.a)-(32.c), k¢ (resp. k3) is a decreasing 
(resp. increasing) function of  T and an in- 
creasing function of  ~ (resp. a9 indepen- 
dent). More  specifically, we have (see 
Fig. 2a) 

"0~(P, TO > "0F(P, Tb), Ta > Tb (33.a) 

and 

T~(P, "Oa) > T~(P, ~b), '0a > '0b (33.b) 

for fixed P. 
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FIG. 2. (a) Effect of the temperature T on the site-MFA first-order transition point r/~ at constant 
pressure P. Here T~ = 500 K (k~(T~) = 106 s-Y), Tb = 450 K, P = 1 atm (see Eqs. (48a)-(48c)). (b) Effect 
of the pressure P on the site-MFA first-order transition point "0r at constant temperature T. Here k3 = 
106 s -~, T = 500 K, Pa = 1 atm, and Pb = 0.5 atm (see Eqs. (48a)-(48c)). 

(ii) When, for a given reaction-catalyst 
system, one lowers the pressure P allowing 
T (resp. 7) to remain unchanged, one ob- 
serves a shift of the critical value 7~ (resp. 
T~) toward higher (resp. lower) values. 

Namely, we have (see Fig. 2b) 

7~(Pa, T) < 7~(Pb, T), Pa > Pb (33.C) 

for fixed T and, if we fix 7, we have 

T~(Pa, 7) > T~(Pb, 7), Pa > Pb. (33.d) 
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3. P A I R  M E A N  F I E L D  A P P R O X I M A T I O N  

The kinetics of the pair coverages X,y are 
related to the triplet coverages X0k as the 
reaction scheme involves two neighbouring 
site mechanisms (Eqs. (2.2)-(2.3)). We de- 
rive closed kinetic equations for the X0 by 
working in the pair-MFA whose underlying 
ideas have been presented in the Introduc- 
tion. Practically it consists of inserting in 
the pair kinetics the following approximate 
forms for the triplet coverages X~k: 

X i i  i ~- S 2 i i / S i  (34.a) 

Xiik = XiiXik/Xi, i 4= k (34.b) 

Xiki = X2ik/4Xk, i q= k (34.c) 

Xok = Xo.XsJ2X j, i --/= j -4 = k. (34.d) 

We report in Appendix A the resulting 
equations for the X0. Let us stress that this 
approach is valid only for ~'3 4= 0 and cannot 
be extended to ~'3 = 0 as we do not consider 
the possibility of instantaneous reaction. 
The phase diagrams for the irreversible 
model, Eqs. (2.1)-(2.3), are obtained by 
gathering the steady-state solutions of Eqs. 
(A1)-(A6) (with k-1 = k-2 = k4 = 0) into the 
sum rules Eq. (8). These bifurcation dia- 
grams have the same form as those of the 
ZD model (i.e., for z3 = 0) (16, 17). 

The only significant difference lies in the 
critical values of the bifurcating parameters 
at which the adsorbate undergoes a first- 

T A B L E  1 

F i r s t - O r d e r  T r a n s i t i o n  Poin t  (Y~) and  S e c o n d - O r d e r  

T r a n s i t i o n  Poin t  (Y2), F u n c t i o n s  of  k3, O b t a i n e d  by  the  

T h r e e  Di f fe ren t  M e t h o d s  

Y^ [~ Site-MFA Pair-MFA MC simulations 

Y~" 0.5610 (17) 0.5241 (17) 0.525 - 0.001 (16) 
Y2 "r3 = 0 0 (17) 0.2497 (17) 0.389 --- 0.005 (•6) 

Y~ 106 0,6666 0.60 0.52 --- 0.01 
10 0.5928 0.55 0.52 -+ 0.01 
1 0.5 0.46 0.435 --- 0.05 
0.1 0,3025 0.295 0.295 +- 0.05 

Y~ 106 0 0.25 0.38 -+ 0.01 
10 0 0.25 0.38 -+ 0.01 
1 0 0.24 0.36 -+ 0.01 
0.1 0 0.205 0.285 -+ 0.05 

and a second-order phase transition. Val- 
ues of these transition points may be found 
in Table 1. 

In order to allow us a direct comparison 
between our results (i.e., with k3 finite) and 
those of the ZD model (i.e., with k3 = ~) we 
must scale the kinetics according to MCS 
procedure of Ziff et al. (16). Within this 
formulation the starting equations ((6.a) 
and (6.b)) have the dimensionless form 

dXa 
d [  " = Y A X s  - 2[C3XAB (34.e) 

dXs. = 2YsXss - 2/~3X'AB, (34.f) 
di  

where 

YA = kl/(kl  + k2), Y s =  1 -  YA (35) 

and, by rule, 

k3 = k3/(kj + k2), i = (kl + kz)t. (36) 

As in the treatment of Ziff et al. (•6) the 
probability YA(YB) represents the relative 
rate of potential ly  efficacious collisions of 
molecules A(B2) with the surface. Although 
necessary for our comparison this scaling is 
rather tricky. It involves YA and k3 as bifur- 
cating parameters, the use of which re- 
quires some comments. 

(i) By definition, the two parameters Ya 
and k3 are coupled and contain the three 
bifurcating parameters ~, T, and P (use 
Eqs. (16.a)-(16.e)): 

YA = TI/(TI + O t T )  ( 3 7 )  

k3 = k3(1 + T/)/[fqP(~xr + ~7)]- (38) 

(ii) When formulated in terms of YA and 
/~3 the s i t e -MFA condition for the first-order 
transition, Eq. (29), reads (Y~ = Yc here) 

2Yc 3 - (2 - 9/~3)Y z - 12/~3Yc + 4/~3 = 0. 
(39) 

(iii) In order to find the value for the trip- 
let of adjustable parameters {~, T, P} corre- 
sponding to a given value of the couple { YA, 
/~3} one can proceed as follows, For a given 
value of/~3, i.e., a combination of values (so 
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far unspecified) for {9, T, P}, a given value 
of YA can be related to some couple of val- 
ues for {9, T} by using Eq. (37), namely, 

"0 = OtTYA[(1 -- YA) ,  for T fixed (40) 

or (use Eq. (16.e)) 

T = (Ez - EO/R{ln a= - In 9 

+ ln[Ya / (1 -  YA)]}, fo r9f ixed .  (41) 

Then for this couple of values for {~7, T} one 
can reach the corresponding value of P by 
means of Eq. (38). 

Now if we examine the pair-MFA results 
reported in Table 1 we reach a principal 
conclusion. Compared to the site-MFA, the 
pair-MFA shows a new steady-state prop- 
erty of the irreversible model, Eqs. (2.1)- 
(2.3), namely, a second-order phase transi- 
tion (i.e., continuous) which appears for a 
finite value Yz of the bifurcating parameter 
YA. The physical meaning of this second- 
order phase transition is the following. In 
the region of small YA (i.e., ~/) the surface is 
mainly occupied by atoms B(YB >> YA). In 
most cases when a molecule A adsorbs, it 
has a nearest neighbour of type B and there- 
fore, after some time, on the average r3, 
desorbs within a product molecule AB. Al- 
though a finite transient reaction rate ex- 
ists, the steady-state reaction rate R3 re- 
mains zero (i.e., -gB = 1 and XA = 0) up to a 
critical value YA = Yz where it begins to 
increase continuously to a maximum value 
reached when YA = Y{ beyond which it 
drops to zero. 

In other words, when treated within the 
pair-MFA, the irreversible model, Eqs. 
(2.1)-(2.3), present a reactive window for 
Ya such that 

Y2 ~ Ya ~ Y~. (42) 

As shown in Table l, the width of this 
reactive window clearly depends on/~3. We 
observe that when/c3 decreases, Y~ shifts 
substantially toward smaller values with, as 
a result, a narrowing of the reactive win- 
dow. Indeed, when 

k3 < kl + k2, (43) 

i.e., when the reaction mechanism Eq. 
(2.3), becomes the rate-limiting step of the 
reaction, Eq. (1), this narrowing of the re- 
active region becomes crucial. 

In relation to this curious feature of the 
irreversible model for the reaction of Eq. 
(1), let us briefly consider the sister reaction 

A + B catalytic surfac~ AB, (44) 

where neither A nor B dissociates upon ad- 
sorption. 

The exact kinetic equations for the irre- 
versible model of this reaction, Eq. (44), 
have the form 

d X a / d t  = k ~ X s  - R3  (45.a) 

dXB/dt = k2Xs - R3. (45.b) 

The steady-state equation 

(kt - k2)Xs = 0 (46) 

implies that Xs is not zero (and R3 :/: 0) only 
when k~ = k> Therefore the reactive win- 
dow is reduced to the single point YA = 0.5; 
otherwise the surface is poisoned by spe- 
cies A (resp. B) when YA > 0.5 (resp. YA < 
0.5). This well-known feature of the reac- 
tion of Eq. (44), (e.g., see Ref. (19b)) is con- 
firmed by MCS (16). 

It appears that when operating in the re- 
gime of Eq. (43), our reaction, Eq. (1), 
tends to behave like its sister reaction, 
Eq. (44). Indeed for k3 < 1, the pair-MFA 
shows that the two-site rule for adsorption 
of B2 involves a steady-state coverage func- 
tion Xss which departs from its site-MFA 
expression . ~  as follows: 

Xss = X~s 2-~'1" (47) 

This feature, already pointed out by pre- 
vious MC simulations (22), is illustrated in 
Fig. 3 which represents y, function of ~, in 
the reactive window ['02, v~] fo r  ]£3 ~ 0.1. 
This plot clearly shows that -~s approaches 
its site-MFA value .~2 when 9 ~ ~ while 
for ~ ~ "02, X--ss behaves rather as Xs. 

Note that the existence of a second-order 
transition as well as this narrowing of the 
reactive window observed (in the absence 
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FIG. 3. Plot of  T, Eq.  (47), vs  */ in the reactive window [72, "0F] = [0.0073, 0.0132] for the  CO 
oxidat ion at P --- 1 a tm and T = 500 K (see Fig. 5). Note  that  at r~ = "02 + e, k3 = 0.104 and Xss  = X~s 32 
while for "0 = "0F, k3 = 0.091 and X ss  = X~s sT. 

of any desorption) in the pair-MFA are con- 
firmed by the MCS results we present in the 
next section. 

4. R E S U L T S  A N D  D I S C U S S I O N  

The first results concern the irreversible 
model, Eqs. (2.1)-(2.3), and are reported in 
Table 1. In our MCS investigations we as- 
sign to the steady-state coverages XA, XB 
the values that, once reached by the sys- 
tem, remain constant within a margin of 
1%. These MCS investigations have been 
performed by fixing/~3 and allowing the bi- 
furcating parameter Ya to vary (see Section 
3). Table 1 gives the critical value Y~(Y2) of 
YA which corresponds to the first (second)- 
order phase transition for different values 
of/c3- 

The examination of Table 1 leads to the 
following remarks: 

(i) It is only for k3 ~ I that our MCS 
values of Y~ and Y2 differ from those ob- 
tained by Ziff et al. (16). 

(ii) F o r / ~  -< 1 the values of Y~ in the 
pair-MFA (and even in the site-MFA) are in 

a fairly good agreement with the MCS val- 
ues. This is not surprising. For YA ~ Y~ the 
reactant coverages become comparable 
(Xa -~ X~) and for k3 -< kj + k2 enough AB 
pairs remain on the surface to favor a ran- 
dom mixing of the species A and B (see also 
Eq. (47)). On the contrary, in the ZD model 
XAS = 0 and the adsorbate is only made of 
isolated clusters (constituted of molecules 
A or B exclusively) which are rather com- 
pact (desorption processes are excluded in 
this model). 

(iii) The case of I:2 is different. The pair- 
MFA clearly underestimates Y2 with re- 
spect to the MCS. Note also that when/~3 
0.1 the reactive window [I:2, Y~] almost 
shrinks. This curious feature has been dis- 
cussed in Section 3. 

Let us also add here that in the presence 
of A-desorption, Eq. (3), the transition 
point Y~ shifts to higher values while Y2 
remains almost unchanged. For instance, 
for/~3 = 1 and k-l = 0.1 k3 the pair-MFA 
gives Y~ = 0.525 and Y2 = 0.24 while MCS 
lead to Y{ = 0.51 ±- 0.01 and Y2 = 0.38 ± 
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0.01 (compare with Table 1). For  more real- 
istic (i.e., lower) values of k-1 the shift of 
Y~ is less important. 

The results we present now are illustra- 
tive of our case study, i.e., CO oxidation 
under atmospheric pressure and for T -<500 
K. If, in this regime, isothermal conditions 
could not strictly be established, this is not 
crucial. Indeed, we only consider steady 
states, i.e., with a "surface temperature"  
Ts constant and a few degrees above the 
ambient temperature T (19). Unless other- 
wise specified we refer to the following in- 
dicative values (see Section 2 for defini- 
tions) 

kt = 5.433 × 109 T -1/2 (48.a) 

k-2 = 3.576 × 109 T -1/2 exp(-1500/T)  

(48.b) 

k3 = k~exp(-4OOO/T) 

k-I = k'_ I exp(-12500/T) 

k4 = (O-ER/O-I)kl. 

(48.c) 

(48.d) 

(48.e) 

In these formulae, we fix N = 5.1014 sites 
cm-2; the pressures are in atmospheres and 
the activation energies in degrees K. More- 
over, we use o-i = 0.54, o-2 = 0.38 (23); E1 = 
0, E2 = 3 kcal mole -1 (24); k~ ~ 109 S - I ,  E-1 
= 25 kcal mole -T (24). Finally we describe 
the Eley-Rideal  mechanism, Eq. (4), of 
"cross  sect ion" O'ER, by the usual colli- 
sional model for the CO adsorption. 

With these values of kt ,  k2, and for '0 
1%, T = 500 K, Eq. (38) yields the follow- 
ing value for the reaction time z3 

7"3 = k31 ~ 10-7/ /c3P.  (49) 

Therefore at P ~ 1 atm, we have 

k 3 --~ 10 6 s -1,  i.e.,/~3 ~ 0.1. (50) 

These values are consistent with the experi- 
mental turnover number (averaged over the 
reactive window), i.e., a few hundred mole- 
cules per second per site (5) and with the 
site-MFA critical constant  kc ~- 5.103 s - l  
(use Eq. (24)). 

The reaction has been MC-simulated 
without any reduction in the rate constants 

and we choose the partial pressure ratio 
= Pl/P2 as bifurcating parameter (P = 1 

atm, T ~ 500 K). 
The most significant results are repre- 

sented in Figs. 4-7. We have only plotted 
the bifurcating diagram for the steady state 
coverage -~A (i.e., X--co) for different situa- 
tions. The qualitative corresponding_behav- 
iour of the companion coverages Xs (i.e., 
X0) may readily be guessed from these fig- 
ures (e.g., see Fig. 1). 

The examination of Figs. 4-7 leads to the 
following remarks: 

(i) As k3 "~ 0.1, the site-MFA is sufficient 
to localize the first-order transition point "0~ 
(see Fig. 4). 

(ii) The second-order phase transition is 
"ki l led"  (i.e., '02 = 0 )  by the ER mecha- 
nism, Eq. (4) (see Fig. 5). Note that this 
vanishing of the second-order transition has 
been observed, in the pair-MFA, for values 
of O-ER/O-I, Eq. (48.e), as small as 5.10 -4. 
The ER mechanism also causes a small 
shift of the transition point ~ toward 
smaller values. 

(iii) When finite (i.e., when k4 = 0), "02 
should be determined by MCS rather than 
within the pair-MFA (see Figs. 4-6). 

(iv) As is well-known, a steady-state 
hysteresis occurs only when CO desorbs 
(see Figs. 6 and 7). In this situation an addi- 
tional critical point appears at "O = '0{ mark- 
ing out the first-order transition from a sta- 
ble adsorbate pure in CO ()(co ~< 1, X0 = 0) 
to a stable mixed adsorbate richer in oxy- 
gen (-~0 > -~co > 0). Experimentally one 
reaches r/{ by allowing "0 to decrease, while 
on the contrary, '01 is determined by allow- 
ing "0 to increase. Note that the first-order 
transition point '0{ (out of reach by MCS) 
should better be determined within the pair- 
MFA than within the site-MFA. For in- 
stance, with k' = 1015 -1 s 1, the pair (resp. 
site)-MFA gives "0~ = 0.0098 (resp. "0~ = 
0.0037). Finally let us mention that, in the 
pair-MFA, we have observed hysteresis for 
values of k' 10 jl s -I -i as small as 

(v) If  present, the second-order transi- 
tion point '02 should be experimentally 
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FIG. 4. Bifurcating diagram for Xa for the irreversible model (i.e., k_~ --- k4 = 0). The heavy line 
represents  the s i t e - M F A  result: ~2 = 0, ~ = 0.0132. The thin line represents  the pa i r -MFA result: ~2 = 
0.0073, ~ = 0.132. The third line ( - - . - - )  represents  the MCS result: ~2 = 0.0127, ~ = 0.0133. The 
dashed lines represent  the unstable steady states. The unstable branch (X'A > ~'B) is out o f  reach by 
MCS. The reactive window is narrowed by MC simulation as seen in the lowest part (b) which shows 
the corresponding steady-state reaction rates. 

marked out by measuring the steady-state 
reaction rate hysteresis. (Compare Figs. 6b 
and 7b) 

5. C O N C L U S I O N S  

We have reported and analysed steady- 
state features such as bifurcation diagrams 
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FIG. 5. (a) Pair-MFA bifurcating diagram for -~a: effect of  the ER mechanism.  The thin line corre- 
sponds  to the  case  k_~ = k4 = 0: "0~ = 0, "02 = 0.0073, "01 = 0.0132; MC simulation gives ~02 = 0.0127. 
The  heavy  line cor responds  to the case  k_~ = 0, k4 = 10-2k~: ~ = "02 = 0, "O~ = 0.0128; this result  is 
confirmed by MCS. The  dashed  lines represent  the unstable  s teady states.  (b) Pair-MFA s teady-s ta te  
react ion rate -~3 cor responding  to these  cases.  

and reaction rate hysteresis for the bimole- 
cular surface reaction, Eq. (1). These 
results have been obtained by means of sta- 
tistical methods (the site- and pair-MFA) 

and using our MC simulation procedures 
for such surface reactions. 

Our first conclusion concerns the influ- 
ence of afinite reaction rate constant on the 
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k4 = 0). Compare  with Fig. 7b. 

bifurcation diagram of the irreversible 
model, Eqs. (2.1)-(2.3). In 1986, Ziff et al. 
(16), by MC simulations, and Dickman 

(17), in the pair-MFA, have shown that for 
an infinite reaction rate constant this bifur- 
cation diagram presents two kinetic phase 
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t r ans i t ions .  N a m e l y ,  in  t e rms  of  the bifur-  

ca t ing p a r a m e t e r  YA, Eq.  (35), 

(i) a f i rs t -order  t r ans i t ion ,  at YA = Y{ ,  
which  charac te r i zes  the s u d d e n  j u m p  f rom 

the m a x i m u m  reac t ive  state to the " p o i s o n -  
i n g "  (sa tura t ion)  of  the surface by  species  

A, and  

(ii) a s e c o n d - o r d e r  t rans i t ion ,  at YA 
= Y2, where  the pure  B-adsorba te  
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smoothly changes into a mixed adsorbate 
with, as a result, the starting of the reac- 
tion. 

Therefore, the reaction proceeds only in 
the "reactive window" YA: [Y2, YT]. This 
reactive phase is enclosed between two in- 
hibited phases: the surface is poisoned by 
the species B (resp. A) when Y < Y2 (resp. 
r > Y~). 

We obtain results comparable to those of 
Ziff  et al. and Dickman (16, 17), as far as 
we consider situations where the adsorp- 
tion processes, Eqs. (2.1) and (2.2), are the 
rate-limiting steps of the reaction, i.e., at 
low pressure P. However,  we have ob- 
served that when/¢3 --~ 1 (see Eq. (36)) the 
reactive window narrows and almost 
shrinks when the reaction step, Eq. (2.3), 
becomes the rate-limiting process of the re- 
action, i.e., for pressure P in the atmo- 
spheric range. This critical narrowing is due 
to the existence of the second-order phase 
transition. 

Our second conclusion concerns the 
modifications of the bifurcation diagram 
and the steady-state reaction rate of the re- 
action when we add to the basic model, 
Eqs. (2.1)-(2.3), the desorption, Eq. (3), 
and/or the ER mechanism, Eq. (4). Here 
we express these properties by considering 
the partial pressure ratio '0 as the only ad- 
justable bifurcating parameter of the prob- 
lem (i.e., we fix P and T). 

When we add to the irreversible model, 
Eqs. (2.1)-(2.3), the desorption of A, Eq. 
(3), we observe an additional first-order 
phase transition, at '0 = "0~. At this transi- 
tion point the system jumps from a stable 
steady-state adsorbate very rich in A(XA >~ 
XB) to a stable steady-state adsorbate richer 
in B(.Ya < XB). In the interval ['0~, "07] the 
system is bistable and, as a consequence, 
we observe a steady-state reaction rate hys- 
teresis. Note also that, in the absence of the 
ER mechanism, Eq. (4), this first-order 
transition point "0~ is "pushed"  by the sec- 
ond-order transition (at '0 = "02) toward the 
other first-order transition point "07. This is 
normal as in the steady states such that 7? < 

*/2 there is no species A on the surface 
(XA = 0). 

When we add to the irreversible model, 
Eq. (2.1)-(2.3), the ER mechanism, Eq. (4), 
we observe, as expected, the vanishing of 
the second-order kinetic phase transition 
(i.e., '02 ~ 0) and a broadening of the reac- 
tive window which becomes [0, "0~]. This 
feature has been observed for values of 
O'ER/O'I > 10 -5 (see Eq. (5)). 

When we add to the irreversible model, 
Eqs. (2.1)-(2.3), both the desorption of A, 
Eq. (3), and the ER mechanism, Eq. (4), we 
observe the vanishing of the second-order 
phase transition ('02 ~ 0).  There results, as 
above, a broadening of the reactive window 
which becomes [0, "0~] and, also important, 
a shift of the first-order transition point '0{ 
toward smaller values of '0, i.e., a signifi- 
cant broadening of the "bistability win- 
dow" ['0~, '0~]. 

The problem of the second-order kinetic 
phase transition (at "02) requires some final 
comments. 

(i) To our knowledge, there is no experi- 
mental evidence of such a second-order 
transition. The reaction rate begins to in- 
crease as soon as "0 departs from zero (e.g., 
Ref. (5b)). 

(ii) The second-order transition ob- 
served for '02 finite is an artifact of the 
model. According to our assumptions (1) 
and (2) (see Introduction) the surface is 
made of active sites (of the same kind) 
which are invariably compatible for the ad- 
sorption of both gaseous reactants. In this 
case the saturation of the surface with reac- 
tant B (e.g., oxygen) necessarily precludes 
the adsorption of the companion reactant A 
(e.g., CO). Therefore if the LH mechanism, 
Eq. (2.3), is the unique reaction step, it is 
normal that for low values of '0, the steady- 
state reaction rate vanishes. It is also obvi- 
ous that if the ER mechanism, Eq. (4), is 
also involved in the model this second- 
order transition disappears (,12 ~ 0). 

(iii) If the surface was composed of two 
kinds of sites, e.g., sites "or" (resp. "/3") 
compatible for the adsorption of A and B2 
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(resp. only of A), even if the LH mecha- dXBs 

nism, Eq. (2.3), were the unique reaction dt  

step, the second-order transition would 
clearly disappear, i.e., 7/2 ~ 0. The/3 sites 
can be interpreted in the Ertl model (7) as 
the sites of the hex phase while in the STM 
model (8) as those blocked by oxide 
formation. 

It thus would appear that the lack of ob- 
servation of a second-order kinetic phase 
transition is of little use in the discussion of 
the controversial role of the ER mechanism 
in the CO oxidation kinetics, for instance dXAB 

(e.g., Refs. (26, 27) ) .  d t  

However,  this absence of a second-order 
transition, when explained, will present an 
advantage in heterogeneous catalysis 
where one considers surface reactions op- 
erating at ordinary pressures, i.e., when/~3 
-< 1. Indeed, in this case we have seen that 
pair MFA equations would be sufficient to 
investigate the steady-state features of 
these reactions in their reactive and bista- 
bility windows ([0, "0~] and [~{, ~ ] ,  re- dXBB 
spectively). 

X'2o XBsXss 
- 3k2 - ~k2 

3 
s Xs 

- ~k3 XABXBs  ak X2AB 

- - y ~ Z  + ~ 3 X A 

XBBXAB 
+ 3 k 3 -  + k-~Xm8 XB 

+ 2k4XBB - k4XBs + 6 k - 2 - -  

k, XBs  

x~B 
XB 

XBBXBs  
-- 3 k - 2 -  (A.2) XB 

Zk XAsXs_____ S X 2 B  
-- k lXBs  + ~ 2 X s  ~k3 XB 

a,. X2AB 
-- 2t~3--~A k3XAB -- k - l S a B  

XAnXBB 
-- k4XAB-- 3 k - 2 -  (A.3) X8 

dXaa  XAAXAB 
-- k lXAs  - 3k3 - -  2 k - J X a a  

dt  XA 

(A.4) 

XBBXAB 
-- ½k2Xss -- 3k3- - - - -~- - -  

d t  AB 

APPENDIX A: THE PAIR EQUATIONS 

We consider the reaction, Eq. (1), de- 
scribed in the kinetic scheme, Eqs. (2.1)- 
(2.3), (3), and (4), completed by the associa- 
tive desorption of atoms B, i.e., d X s s  

d t  -2 
B2 + 52 < 2 BS.  

Using the p a i r - M F A ,  sketched in Section 
3 (See Eqs. (34a)-(34d)), we derive for the 
pair coverages X~/, Eq. (5), the following 
kinetic equations: 

dXAs ar XAsXss 
dt  - 2 k l X s s  - k l X a s  - ~ 2  

+ ak X Z A B  XAAXAB 
2 3 --k-7 + 3k3 - - - y ~  a 

XABXAs 
-- a z k 3 -  + 2k-IXAa 

XA 
XABXBB dXa 

- k - l X A s  + k4XAB + 3 k - 2 -  XB 
(A.1) 

X B s X s s  
ak - -  2k4XBB -- k - zXBB + ~ 2  Xs 

- 6k-2 X28 (A.5) 
XB 

_ 1  X - X2 $s 
- - 2 k l X s s  ~k2 ss 3k2 K s  

XasXa8 
+ k3XAB + ~k3a _ _  Xa 

XABXBs 
+ a z k 3 -  + k-IXAs + k4XBs XB 

XBBXRs 
+ k - 2 X 8 8  + 3 k - 2 -  (A.6) XB 

Note that, if we collect these pair-equa- 
tions, Eqs. (A.1)-(A.6), according to Eq. 
(8), we obtain the following kinetic equa- 
tions for the coverages Xi: 

dt  
- R1 - R - I  - R3 = k j X s  

- k - l X a  - 2k3Xa8 (A.7a) 
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dXB = 2R2 - 2R-2 - R3 - R4 = 2k2Xss 
dt 

- 4k-2XBB -- 2k3XAB - k4XB 

(A.7b) 

and  we ver i fy  the sum rule,  Eq.  (7), i .e. ,  

dXs  dXA dXB 

dt dt dt " 

Eqs.  (A.7a) and  (A.7b) are f o r m a l l y  ident i -  
cal to the exac t  equa t ions  for the comple te  
k inet ic  scheme.  
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